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Abstract

Astract. in this paper , We will prove that

lim
n

inf(
√
p
n+1

−√
p
n
) < 1

We introduce a refinement of the (james maynard method) GPY sieve
method for studying prime k-tuples and small gaps between primes. This
refinement avoids previous limitations of the method, and allows us to
show that for each k, the prime k-tuples conjecture holds for a positive
proportion of admissible k-tuples. In particular, lim infn (pn+m − pn) <
∞ for every integer m. We also show that lim inf (pn+1 − pn) ≤ 600, and,
if we assume the Elliott-Halberstam conjecture, that lim inf (pn+1 − pn) ≤
12 and lim infn (pn+2 − pn) ≤ 600.

1 Introduction (James maynard method to prove
that lim infn (pn+2 − pn) ≤ 600.)

We say that a set H = {h1, . . . , hk} of distinct non-negative integers is ’admis-
sible’ if, for every prime p, there is an integer ap such that ap ̸≡ h(modp) for
all h ∈ H. We are interested in the following conjecture.

Conjecture (Prime k-tuples conjecture). Let H = {h1, . . . , hk} be admissible.
Then there are infinitely many integers n such that all of n+ h1, . . . , n+ hk are
prime.

When k > 1 no case of the prime k-tuples conjecture is currently known.
Work on approximations to the prime k-tuples conjecture has been very suc-
cessful in showing the existence of small gaps between primes, however. In their
celebrated paper [5], Goldston, Pintz and Yildırım introduced a new method
for counting tuples of primes, and this allowed them to show that

lim inf
n

pn+1 − pn
log pn

= 0.

The recent breakthrough of Zhang [9] managed to extend this work to prove

lim inf
n

(pn+1 − pn) ≤ 70000000,
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thereby establishing for the first time the existence of infinitely many bounded
gaps between primes. Moreover, it follows from Zhang’s theorem the that num-
ber of admissible sets of size 2 contained in [1, x]2 which satisfy the prime 2-
tuples conjecture is ≫ x2 for large x. Thus, in this sense, a positive proportion
of admissible sets of size 2 satisfy the prime 2-tuples conjecture. The recent
polymath project [7] has succeeded in reducing the bound (1.2) to 4680, by
optimizing Zhang’s arguments and introducing several new refinements.

The above results have used the ’GPY method’ to study prime tuples and
small gaps between primes, and this method relies heavily on the distribution
of primes in arithmetic progressions. Given θ > 0, we say the primes have ’level
of distribution θ ’ 1 if, for every A > 0, we have∑

q≤x†

max
(a,q)=1

∣∣∣∣π(x; q, a)− π(x)

φ(q)

∣∣∣∣≪A
x

(log x)A
.

1 We note that different authors have given slightly different names or defini-
tions to this concept. For the purposes of this paper, (1.3) will be our definition
of the primes having level of distribution θ. Theorem 1.3. We have

lim inf
n

(pn+1 − pn) ≤ 600.

We emphasize that the above result does not incorporate any of the technol-
ogy used by Zhang to establish the existence of bounded gaps between primes.
The proof is essentially elementary, relying only on the Bombieri-Vinogradov
theorem. Naturally, if we assume that the primes have a higher level of distri-
bution, then we can obtain stronger results.

Theorem 1.4. Assume that the primes have level of distribution θ for every
θ < 1. Then

lim inf
n

(pn+1 − pn) ≤ 12,

lim inf
n

(pn+2 − pn) ≤ 600.

Although the constant 12 of Theorem 1.4 appears to be optimal with our
method in its current form, the constant 600 appearing in Theorem 1.3 and
Theorem 1.4 is certainly not optimal. By performing further numerical calcu-
lations our method could produce a better bound, and also most of the ideas of
Zhang’s work (and the refinements produced by the polymath project) should
be able to be combined with this method to reduce the constant further. We
comment that the assumption of the Elliott-Halberstam conjecture allows us to
improve the bound on Theorem 1.1 to O

(
m3e2m

)
.

2 An IMProved GPY SIEVE METHOD
We first give an explanation of the key idea behind our new approach. The
basic idea of the GPY method is, for a fixed admissible set H = {h1, . . . , hk},
to consider the sum
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S(N, ρ) =
∑

N≤n<2N

(
k∑

i=1

χP (n+ hi)− ρ

)
wn.

Here χP is the characteristic function of the primes, ρ > 0 and wn are non-
negative weights. If we can show that S(N, ρ) > 0 then at least one term in the
sum over n must have a positive contribution. By the non-negativity of wn, this
means that there must be some integer n ∈ [N, 2N ] such that at least ⌊ρ+1⌋ of
the n+hi are prime. (Here ⌊x⌋ denotes the largest integer less than or equal to
x.) Thus if S(N, ρ) > 0 for all large N , there are infinitely many integers n for
which at least ⌊ρ+ 1⌋ of the n+ hi are prime (and so there are infinitely many
bounded length intervals containing ⌊ρ+ 1⌋ primes).

The weights wn are typically chosen to mimic Selberg sieve weights. Estimat-
ing (2.1) can be interpreted as a ’ k-dimensional’ sieve problem. The standard
Selberg k-dimensional weights (which can be shown to be essentially optimal in
other contexts) are

wn =

 ∑
d|
∏k

i=1(n+hi)
d<R

λd


2

, λd = µ(d)(logR/d)k.

With this choice we find that we just fail to prove the existence of bounded
gaps between primes if we assume the Elliott-Halberstam conjecture. The key
new idea in the paper of Goldston, Pintz and Yildırım [5] was to consider more
general sieve weights of the form

λd = µ(d)F (logR/d),

for a suitable smooth function F . Goldston, Pintz and Yıldırım chose
F (x) = xk+l for suitable l ∈ N, which has been shown to be essentially op-
timal when k is large. This allows us to gain a factor of approximately 2 for
large k over the previous choice of sieve weights. As a result we just fail to prove
bounded gaps using the fact that the primes have exponent of distribution θ for
any θ < 1/2, but succeed in doing so if we assume they have level of distribution
θ > 1/2.

The new ingredient in our method is to consider a more general form of the
sieve weights

wn =

 ∑
di|n+hi⇓i

λd1,...,dk

2

.

Using such weights with λd1,...,dk
is the key feature of our method. It allows

us to improve on the previous choice of sieve weights by an arbitrarily large
factor, provided that k is sufficiently large. It is the extra flexibility gained by
allowing the weights to depend on the divisors of each factor individually which
gives this improvement.
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The idea to use such weights is not entirely new. Selberg [8, Page 245]
suggested the possible use of similar weights in his work on approximations
to the twin prime problem, and Goldston and Yıldırım [6] considered similar
weights in earlier work on the GPY method, but with the support restricted to
di < R1/k for all i.

We comment that our choice of λd1,...,dk
will look like

λd1,...,dk
≈

(
k∏

i=1

µ (di)

)
f (d1, . . . , dk) ,

for a suitable smooth function f . For our precise choice of λd1,...,dk
(given in

Proposition 4.1) we find it convenient to give a slightly different form of λd1,...,dk
,

but weights of the form (2.5) should produce essentially the same results.

3 Notation
We shall view k as a fixed integer, and H = {h1, . . . , hk} as a fixed admissible
set. In particular, any constants implied by the asymptotic notation o,O or
≪ may depend on k and H. We will let N denote a large integer, and all
asymptotic notation should be interpreted as referring to the limit N → ∞.

All sums, products and suprema will be assumed to be taken over variables
lying in the natural numbers N = {1, 2, . . .} unless specified otherwise. The
exception to this is when sums or products are over a variable p, which instead
will be assumed to lie in the prime numbers P = {2, 3, . . .,}.

Throughout the paper, φ will denote the Euler totient function, τr(n) the
number of ways of writing n as a product of r natural numbers and µ the
Moebius function. We will let ϵ be a fixed positive real number, and we may
assume without further comment that ϵ is sufficiently small at various stages of
our argument. We let pn denote the nth prime, and #A denote the number of
elements of a finite set A. We use ⌊x⌋ to denote the largest integer n ≤ x, and
⌈x⌉ the smallest integer n ≥ x. We let (a, b) be the greatest common divisor of
integers a and b. Finally, [a, b] will denote the closed interval on the real line
with endpoints a and b, except for in Section 5 where it will denote the least
common multiple of integers a and b instead.

4 OUTLINE OF THE PROOF
We will find it convenient to choose our weights wn to be zero unless n lies
in a fixed residue class v0(modW ), where W =

∏
p≤D0

p. This is a technical
modification which removes some minor complications in dealing with the effect
of small prime factors. The precise choice of D0 is unimportant, but it will
suffice to choose

D0 = log log logN,
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so certainly W ≪ (log logN)2 by the prime number theorem. By the Chinese
remainder theorem, we can choose v0 such that v0+hi is coprime to W for each
i since H is admissible. When n ≡ v0(modW ), we choose our weights wn of
the form (2.4). We now wish to estimate the sums

S1 =
∑

N≤n<2N
n≡v0

( mod W )

 ∑
di|n+hi∀i

λd1,...,dk

2

,

S2 =
∑

N≤n<2N
n≡v0

 k∑
( mod W )

χP (n+ hi)

 ∑
di|n+hi∀i

λd1,...,dk

2

.

We evaluate these sums using the following proposition.
Proposition 4.1. Let the primes have exponent of distribution θ > 0, and let

R = Nθ/2−δ for some small fixed δ > 0. Let λd1,...,dk
be defined in terms of a

fixed smooth function F by

λd1,...,dk
=

(
k∏

i=1

µ (di) di

) ∑
r1,...,rk
di∀i

(ri,W )=1∀i

µ
(∏k

i=1 ri

)2
∏k

i=1 φ (ri)
F

(
log r1
logR

, . . . ,
log rk
logR

)
,

whenever
(∏k

i=1 di,W
)
= 1, and let λd1,...,dk

= 0 otherwise. Moreover, let

F be supported on Rk =
{
(x1, . . . , xk) ∈ [0, 1]k :

∑k
i=1 xi ≤ 1

}
. Then we have

S1 =
(1 + o(1))φ(W )kN(logR)k

W k+1
Ik(F )

S2 =
(1 + o(1))φ(W )kN(logR)k+1

W k+1 logN

k∑
m=1

J
(m)
k (F ),

provided Ik(F ) ̸= 0 and J
(m)
k (F ) ̸= 0 for each m, where

Ik(F ) =

∫ 1

0

· · ·
∫ 1

0

F (t1, . . . , tk)
2
dt1 . . . dtk,

J
(m)
k (F ) =

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

F (t1, . . . , tk) dtm

)2

dt1 . . . dtm−1dtm+1 . . . dtk.

We recall that if S2 is large compared to S1, then using the GPY method
we can show that there are infinitely many integers n such that several of the
n+ hi are prime. The following proposition makes this precise.

Proposition 4.2. Let the primes have level of distribution θ > 0. Let δ > 0

and H = {h1, . . . , hk} be an admissible set. Let Ik(F ) and J
(m)
k (F ) be given
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as in Proposition 4.1 and let Sk denote the set of Riemann-integrable functions
F : [0, 1]k → R supported on Rk =

{
(x1, . . . , xk) ∈ [0, 1]k :

∑k
i=1 xi ≤ 1

}
with

Ik(F ) ̸= 0 and J
(m)
k (F ) ̸= 0 for each m. Let

Mk = sup
F∈Sk

∑k
m=1 J

(m)
k (F )

Ik(F )
, rk =

⌈
θMk

2

⌉
.

Then there are infinitely many integers n such that at least rk of the n +
hi(1 ≤ i ≤ k) are prime. In particular, lim infn (pn+rk−1 − pn) ≤ max1≤i,j≤k (hi − hj).
Proof of Proposition 4.2 We let S = S2 − ρS1, and recall that from Section 2
that if we can show S > 0 for all large N , then there are infinitely many integers
n such that at least ⌊ρ+ 1⌋ of the n+ hi are prime.

We put R = Nθ/2−δ for a small δ > 0. By the definition of Mk, we can
choose F0 ∈ Sk such that

∑k
m=1 J

(m)
k (F0) > (Mk − δ) Ik (F0) > 0. Since F0 is

Riemann-integrable, there is a smooth function F1 such that
∑k

m=1 J
(m)
k (F1) >

(Mk − 2δ) Ik (F1) > 0. Using Proposition 4.1, we can then choose λd1,...,dk
such

that

S =
φ(W )kN(logR)k

W k+1

 logR

logN

k∑
j=1

J
(m)
k (F1)− ρIk (F1) + o(1)


≥ φ(W )kN(logR)kIk (F1)

W k+1

((
θ

2
− δ

)
(Mk − 2δ)− ρ+ o(1)

)
.

If ρ = θMk/2 − ϵ then, by choosing δ suitably small (depending on ϵ ), we
see that S > 0 for all large N . Thus there are infinitely many integers n for
which at least ⌊ρ+ 1⌋ of the n+ hi are prime. Since ⌊ρ+ 1⌋ = ⌈θMk/2⌉ if ϵ is
suitably small, we obtain Proposition 4.2.

Thus, if the primes have a fixed level of distribution θ, to show the existence
of many of the n + hi being prime for infinitely many n ∈ N we only require
a suitable lower bound for Mk. The following proposition establishes such a
bound for different values of k.

Proposition 4.3. Let k ∈ N, and Mk be as given by Proposition 4.2 Then
(1) We have M5 > 2.
(2) We have M105 > 4.
(3) If k is sufficiently large, we have Mk > log k − 2 log log k − 2.
We now prove Theorems 1.1, 1.2, 1.3 and 1.4 from Propositions 4.2 and 4.3,
First we consider Theorem 1.3, We take k = 105. By Proposition 4.3, we

have M105 > 4. By the Bombieri-Vinogradov theorem, the primes have level of
distribution θ = 1/2− ϵ for every ϵ > 0. Thus, if we take ϵ sufficiently small, we
have θM105/2 > 1. Therefore, by Proposition 4.2, we have lim inf (pn+1 − pn) ≤
max1≤i,j≤105 (hi − hj) for any admissible set H = {h1, . . . , h105}. By compu-
tations performed by Thomas Engelsma (unpublished), we can choose H such
that 0 ≤ h1 < . . . < h105 and h105 − h1 = 600. This gives Theorem 1.3.
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If we assume the Elliott-Halberstam conjecture then the primes have level of
distribution θ = 1 − ϵ. First we take k = 105, and see that θM105/2 > 2
for ϵ sufficiently small (since M105 > 4 ). Therefore, by Proposition 4.2,
lim infn (pn+2 − pn) ≤ max1≤i,j≤105 (hi − hj). Thus, choosing the same ad-
missible set H as above, we see lim infn (pn+2 − pn) ≤ 600 under the Elliott-
Halberstam conjecture.

Next we take k = 5 and H = {0, 2, 6, 8, 12}, with θ = 1− ϵ again. By Propo-
sition 4.3 we have M5 > 2, and so θM5/2 > 1 for ϵ sufficiently small. Thus, by
Proposition 4.2, lim infn (pn+1 − pn) ≤ 12 under the Elliott-Halberstam conjec-
ture. This completes the proof of Theorem 1.4

2 Explicitly, we can take H = {0, 10, 12, 24, 28, 30, 34, 42, 48, 52, 54, 64, 70, 72, 78, 82, 90, 94, 100, 112,
114, 118, 120, 124, 132, 138, 148, 154, 168, 174, 178, 180, 184, 190, 192, 202, 204, 208, 220, 222, 232, 234,
250, 252, 258, 262, 264, 268, 280, 288, 294, 300, 310, 322, 324, 328, 330, 334, 342, 352, 358, 360, 364, 372,
378, 384, 390, 394, 400, 402, 408, 412, 418, 420, 430, 432, 442, 444, 450, 454, 462, 468, 472, 478, 484, 490,
492, 498, 504, 510, 528, 532, 534, 538, 544, 558, 562, 570, 574, 580, 582, 588, 594, 598, 600}.
This set was obtained from the website http://math.mit.edu/ primegaps/main-
tained by Andrew Sutherland.Finally, we consider the case when k is large. For
the rest of this section, any constants implied by asymptotic notation will be in-
dependent of k. By the Bombieri-Vinogradov theorem, we can take θ = 1/2− ϵ.
Thus, by Proposition4.3, we have for k sufficiently large

θMk

2
≥
(
1

4
− ϵ

2

)
(log k − 2 log log k − 2).

We choose ϵ = 1/k, and see that θMk/2 > m if k ≥ Cm2e4m for some
absolute constant C (independent of m and k ). Thus, for any admissible set
H = {h1, . . . , hk} with k ≥ Cm2e4m, at least m + 1 of the n + hi must be
prime for infinitely many integers n. We can choose our set H to be the set{
pπ(k)+1, . . . , pπ(k)+k

}
of the first k primes which are greater than k. This is

admissible, since no element is a multiple of a prime less than k (and there are k
elements, so it cannot cover all residue classes modulo any prime greater than k.)
This set has diameter pπ(k)+k−pπ(k)+1 ≪ k log k. Thus lim infn (pn+m − pn) ≪
k log k ≪ m3e4m if we take k =

⌈
Cm2e4m

⌉
. This gives Theorem 1.1.

We can now establish Theorem 1.2 by a simple counting argument. Given
m, we let k =

⌈
Cm2e4m

⌉
as above. Therefore if {h1, . . . , hk} is admissible, then

there exists a subset {h′
1, . . . , h

′
m} ⊆ {h1, . . . , hk} with the property that there

are infinitely many integers n for which all of the n+ h′
i are prime (1 ≤ i ≤ m).

We let A2 denote the set formed by starting with the given set A = {a1, . . . , ar},
and for each prime p ≤ k in turn removing all elements of the residue class mod-
ulo p which contains

of size k must be admissible, since it cannot cover all residue classes modulo p
for any prime p ≤ k. We let s = #A2, and since r is taken sufficiently large in
terms of m, we may assume that s > k.

We see there are
(

s
k

)
sets H ⊆ A2 of size k. Each of these is ad-
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missible, and so contains at least one subset {h′
1, . . . , h

′
m} ⊆ A2 which sat-

isfies the prime m-tuples conjecture. Any admissible set B ⊆ A2 of size m

is contained in
(

s−m
k −m

)
sets H ⊆ A2 of size k. Thus there are at least(

s
k

)(
s−m
k −m

)−1

≫m sm ≫m rm admissible sets B ⊆ A2 of size m which

satisfy the prime m-tuples conjecture. Since there are
(

r
m

)
≤ rm sets

{h1, . . . , hm} ⊆ A, Theorem 1.2 holds.
We are left to establish Propositions 4.1 and 4.3.

Corollary 1 limn inf(
√
p
n+1

−√
p
n
) < 1 We get easily the following equivalent

proposition : limn inf(
√
p
n+1

−√
p
n
) < 1 ⇔ limn inf(pn+1− pn < 1+2

√
(pn))

(james maynard proved that :)

lim
n

inf(pn+1 − pn) < 600

and while we have limn inf(
√
p
n
) > 600 ∴

limn inf(
√
p
n+1

−√
p
n
) < 1 QED.
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